Scalene triangle 0 congruent sides. b h Right triangle 1 right angle. The side opposite the right angle is called the hypotenuse. b h Area = 1/2 bh Isosceles triangle 2 congruent sides. b h Equilateral triangle 3 congruent sides. b h Pythagorean theorem a2 + b2 = c2 b c a Congruency cases Angle, Side, Angle Side, Angle, Side Side, Side, Side Hypotenuse Leg b1 b b Square Area = b2 Perimeter = 4b Rectangle Area = ab Perimeter = 2(a + b) Parallelogram Area = bh Perimeter = 2(a + b) Trapezoid Area = 1 2 (b1 + b2 )h Perimeter = a + b1 + b2 + c b2 a c h b a Rhombus Area = 1 2 d1 d2 Perimeter = 4b b h a d2 d1 Pentagon 5 sides Hexagon 6 sides Heptagon 7 sides Decagon 10 sides Octagon 8 sides Sum of Interior Angles = 180 (n-2). (n = number of angles) Perpendicular lines Line segment Transversal line Ray Line of symmetry Line Parallel lines Reflex angle 180˚ < m x < 360˚ Obtuse angle 90˚ < m x < 180˚ x Straight angle m x = 180˚ x Right angle m x = 90˚ x x Complementary add up to 90˚ Acute angle m x < 90˚ x Supplementary add up to 180˚ ANGLES QUADRILATERALS REGULAR POLYGONS SUM OF INTERIOR ANGLES FOR ANY POLYGON = 180 (N – 2). (N = NUMBER OF ANGLES) Scalene triangle 0 congruent sides Scalene triangle 0 congruent sides. b h Right triangle 1 right angle. The side pposite the right angle is called t e hypotenuse. b h Area = 1/2 bh I osceles triangle 2 congruent sides. b h Equilateral triangle 3 congruent sides. b h Pythagorean theorem a2 + b2 = c2 b c a Congruen y ca es Angle, Side, Angle Side, Angle, Side Side, Side, Side Hypotenuse Leg Scalene triangle 0 congruent sides. b h Righ t iang e 1 right angle. The side opposite the right angle is called the hypotenuse. b h Area = 1/2 bh Isosce es triangle 2 congruent sid s. b h Equilatera triangle 3 congruent sides. b h Pythagorean theorem a2 + b2 = c2 b c a Congruency cases Angle, Side, Angle Side, Angle, Side Side, Side, Side Hypotenuse Leg Sca e e a g ng u si Righ a gle igh a gle s s i h ang e is a l h sos e t ia gle con r s d s. E uila e al t ia g e uent si Py hago ean heo e o g ue cy ca e gl Si gl Si gl Si Si Si Si Scalene t i ngle 0 congruent sides. b h Right riangle 1 right angle. The side op osite the right angle is called the hypotenuse. b h Area = 1/2 bh Isosceles triangle 2 congruent sides. b h Equilateral triangle 3 congruent sides. b h Pythagorean theorem a2 + b2 = c2 b c a Congruency cases Angle, Side, Angle Side, Angle, Side Side, Side, Side Hypotenuse Leg SOLIDS s s s Cube Volume = s3 Surface area = 6s2 l w h Pyramid Volume = 1/3· lwh r Sphere Volume = 4/3• r3 Surface area = 4 r2 r h Cylinder Volume = r2h Surface area = 2 rh + 2 r2 l w h Rectangular prism Volume = lwh Surface area = 2wl + 2wh + 2hl r h Cone Volume = 1/3· r2h Surface area = r2+ r r 2+ h2 Volume = B 3 B = area of base s s s Cube Volume = s3 Surface area = 6s2 l w h Pyramid Volume = 1/3· lwh r Sphere Volume = 4/3• r3 Surface area = 4 r2 r h Cylinder Volume = r2h Surface area = 2 rh + 2 r2 l w h Rectangular prism Volume = lwh Surface area = 2wl + 2wh + 2hl r h Cone Volume = 1/3· r2h Surface area = r2+ r r 2+ h2 OR TRIANGLES AREA = BH 2 Geometry i h ngle h e. t the right angle i c ll d t e t s . Equilat a le 3 congr t si s Is s triangl 2 u d s Pyt eor m a2 + 2 Circumference = 2 r Area = r2 approximates 3.14159 or 3 1/7 Arc C = center d = diameter r = radius s = secant t = tangent c = chord s d r C c t x a b C A B x y C y x C Semicircle Circle theorems m x = 90˚ if and only if ab is the diameter m x = m y if both angles are subtended on the same arc, AB 2m x = m y C c Circumference = 2 r Area = r2 approximates 3.14159 or 3 1/7 Arc C center d = diameter r radius s secant t tangent c = chord s d r C c t x a b C A B x y C y x C Semicircle Circle theorems m x = 90˚ if and only if ab is the diameter m x = m y if both angles are subtended on the same arc, AB 2m x = m y CIRCLES RESOURCE PAGES R–10
RkJQdWJsaXNoZXIy ODA5Mw==